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The Spontaneous Generation of the Singularity in a 
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The question whether solutions of the unsteady laminar boundary layer equation may turn 
singular spontaneously has been in dispute lately. By a case study, here a numerical proof is 
given that the spontaneous generation of a singularity does indeed occur, thus settling the 
point. The proof is achieved by abandoning the usual Eulerian boundary layer coordinates in 
favor of Lagrangian coordinates. The singularity then occurs at a stationary point, the 
presence of which can be ascertained numerically without ambiguity. 

1. INTRODUCTION 

The laminar flow in the boundary layer of a cylinder started impulsively from rest 
is governed by the boundary layer equation [ 1) 

u, + u 24, + u u, = sin x cos x + u,, (1) 

and the continuity equation 

u, + 0, = 0 (2) 

with the further boundary conditions and initial data, 

u(0, y, t) = u(fl, y, t) = u(x, 0, f) = 0, 

u(x, co, t) = sin x, 

u(x, y, 0) = sin x for y # 0. 

It is well known that the solution for small time is smooth: 

(3) 

u - sin(x) erf(y/2P2) (4) 

and that the steady solution for f = co exhibits the so-called Goldstein singularity at 
the separation point. The existence of this singularity in steady boundary layer flow 
along fixed walls has led to important advances in the understanding of steady 
boundary layer separation. Because of this fact, the question whether unsteady 
boundary layer flow may also be singular has received considerable attention. Some 
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authors, notably Sears and Telionis [2, 31, Shen and Nenni [4], Wang and Shen [S ], 
and Shen [6], have adopted the assumption that separation at high Reynolds number 
is always characterized by a singularity in the boundary layer approximation. 
Supportive arguments for such an assumption are to be found in the semi-similar 
solutions of Williams and Johnson [7] and the asymptotic expansions of Shen and 
Nenni [4]. 

The main point of criticism for the singularity hypothesis has been the lack of 
proof that the boundary layer solution does indeed turn singular spontaneously. It is 
conceivable that the solution of Eqs. (I) through (3) would only be singular for 
t = co. Telionis and Tsahalis [8] performed a finite difference calculation for this 
problem and reached the conclusion that a singularity appears at, in our coordinates, 
t z 1.3. However, they admit that at t = 1.3, “the singular behavior is somewhat 
confused.” Cebeci [9], after repeating this calculation, claimed that the apparent 
singular behavior is due to the numerical method and that the solution is smooth at 
t = 1.3. His calculation terminates at t = 2.8 “because the shear layer became too 
thick to handle efficiently by the methods of [his] paper.” This thickening was 
predicted previously by Proudman and Johnson [ 111. According to Cebeci 191, his 
results “suggest most strongly that [the solution] is smooth for all finite time”; the 
singularity hypothesis is not correct. Similar positions have been taken by, e.g., 
Belcher et al. [lo] and Proudman and Johnson [ 111, also without proof. 

The conclusion of the present work is that [9] is correct in the assertion that the 
boundary layer is smooth at t = 1.3, but not in the conjecture that the solution of 
Eqs. (1) through (3) necessarily remains smooth thereafter. An accurate solution of 
these equations, as obtained by us, in fact displays a singularity at t = 3 f 0.05. This 
solution is the subject of the present paper. It seems plausible that the convergence 
difficulties which Belcher et al., [lo] and Collins and Dennis [ 121 experienced 
respectively at t = 2 and t = 2.5 are connected with the appearance of the singularity 
at t = 3. The low resolution in the streamwise direction in [ 101 may be a contributing 
factor for the early breakdown of their calculation. 

If an open mind is kept regarding the possible presence of a singularity, any 
attempt to refine the straightforward finite difference solution of (1) through (3) must 
overcome the serious difficulties mentioned above, viz., 

1. The rapid growth of the boundary layer thickness near x = 71, as predicted in 
[ill* 

2. The blow up of the gradient of the velocity u near the singularity when it 
does arise, near x = 1.942 and t = 3, according to our calculation. 

The first problem may be effectively remedied by changing to Lagrangian 
coordinates, as the distortion of these coordinates near x = II renders the Lagrangian 
boundary layer thickness much better behaved than its Eulerian counterpart. 
Interestingly, the Lagrangian description also eliminates the second difficulty. This 
comes about because, as in the steady case, the “viscous force,” u,, in (I), does not 
blow up. The individual terms of the convective derivative, the left-hand side in (I), 
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t-o t-4 

FIG. I. The distortion of a typical Lagrangian grid with time 

do blow up, but in the Lagrangian description those balancing large terms are 
replaced by a single time derivative. Therefore, as will be substantiated by the 
numerical results to be presented, the solution is better behaved in Lagrangian coor- 
dinates than in Eulerian ones. 

The present work extends the earlier work by van Dommelen and Shen ] 131, in 
which the same case as presented here was calculated, but with different initial data, 

u(x, y, 0) =f(y) sin x, (5) 

where f(y) is the Hiemenz velocity profile [ 11, instead of the step function initial 
data of Eq. (3). From [ 131 we borrow Fig. 1, as it gives a beautiful picture of how the 
Lagrangian grid distorts with time and consequently, like a geometrical mapping, 
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compensates for the problems near x = rr and the region near x = 2, where the 
Eulerian derivatives of the flow velocity u tend to blow up. Figure 1 displays the 
Lagrangian grid in the “original” Eulerian coordinates x and y. 

It may be thought surprising that the Lagrangian approach is advantageous 
compared to the Eulerian one. Textbooks, e.g., [ 14, 151, tend to discourage 
Lagrangian calculations in more than one dimension because of the distortion of the 
grid, as depicted in Fig. 1. But in the present case the distortions near x = 2 and 
x = rt lead to higher numerical accuracy, as the dependent variable u is better 
behaved. However, near x = 0 the fact the the grid floats downstream (Fig. 1) leads 
to a gradual blow up of the derivatives in this region. In fact at y = co a simple 
expansion shows that this blow up is exponential in time. The remedy is to use a 
suitable geometrical stretching of the Lagrangian coordinates in this region, and 
sufficient accuracy can still be maintained. 

It turns out that the Lagrangian dependent variable x develops a stationary point. 
In Section 2 it is shown how a stationary point in x implies that the dependent 
variable y is singular because of the continuity equation. Thus for separation in the 
Lagrangian description, one now looks for a stationary point instead of a singular 
one, a much simpler problem! 

In Section 3 the well-known Crank-Nicholson scheme is adapted to the present 
problem. The convergence of an iterative Gauss-Seidel procedure is discussed briefly. 
The handling of the first computational steps is also considered. 

In Section 4 some of the results of interest are given. The obtained accuracy is 
studied in detail and found to be excellent. 

2. THE LAGRANGIAN FORMULATION 

Lagrangian coordinates < and q are introduced such that Lagrangian and Eulerian 
planes coincide at time I = 0: 

(=x, v=y at t = 0. (6) 

Then the boundary layer equation (1) becomes 

u,=;. sin 2x + xi u,, - 2 XI x, Udt, + x5, UIl 

-x~.u~.x,,+(x~.u,+x,‘u*).xltt-x,’u,~x~I. (7) 

With (7) all familiar boundary layer results may be rederived, but for brevity we shall 
not do so here; several of these results are presented in [ 13,6]. 

As 
I 

XI = u, (8) 
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(7) constitutes one non-linear third order equation for x. The second dependent 
variable, y, is found from the continuity equation, which is here of the form 

xc y, -xv. y,= 1. (9) 

The characteristics of (9) are 

from which relations it easily follows that the characteristics are lines of constant X. 
Equation (10) may also be written as 

4 
z=& (‘1) 

if s is the arclength along the lines of constant x in the Lagrangian plane. 
Equation (11) shows that the gradient of y becomes infinite when x has a 

stationary point; hence stationary points of x are necessarily singular for the behavior 
of y. Furthermore, as 

uX=Y v ‘Ut-Yl’u, (12) 

it follows that U, also blows up, which is an old conjecture [2] regarding the 
boundary layer solution at “separation.” 

3. NUMERICAL PROCEDURE 

It is convenient to stretch the r and q coordinates to improve resolution near the 
front stagnation point x = < = 0, to accommodate for the fact that the boundary layer 
starts at zero thickness, and to render the computational domain finite in q direction. 
This is achieved by geometrically mapping l and q onto a and /3 as follows: 

r = 3.236 arctan(0.464 tan ina) - 1.942 a, 

u = 1.5 14t/l + 4t]‘j2 tan +7c/3. 
(13) 

The numerical values of the coefficients are rather arbitrary. In fact we did some 
numerical experimenting with different values at a very coarse grid, taking a finer 
grid as reference, until we obtained values for which the numerical accuracy of the 
finite difference calculation appeared good. In terms of a and /3 the boundary layer 
equation (7) becomes 
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u, = 4 sin 2x + a: /It, [xi ugq - 2 x, x5 u,~ + xi u,, 

- x, u, x&J + (x, 245 + x5 u,) xa5 - x5 u5 x,, 

+ (x, u, -x5 %J (x, P,,/Pt, -x5 q&,1 -P, ug. (14) 

In terms of the finite difference formulation, (14) is written in the form 

u, = + sin 2x + ai /3t, (xi uoB - 2 x, xg u,~ + xi u,,) 

+C,~u,+C,~u,+C,~U5, (15) 

where 

C, = ai ~2,~ P,,l(l + 4t) -4 

with x,~ the value of x, at t = 0, and 

C, = a: /?% (-x5 x,, + x, xe5 - x, x5 a,,/a: 

+ xi P,,/P:> - P, - co. 

All terms in (15) are approximated by the usual central finite difference formulae of 
the Crank-Nicholson scheme, (see, e.g., [ 16]), except for the first order u derivatives 
of the last two terms. For those last two terms, if C, > 0, then u is approximated by a 
backward derivative in the previous plane of constant time and a forward derivative 
in the plane being calculated. If C, < 0, the use of forward and backward derivatives 
is interchanged. The last term in (15) is handled similarly. This manner of approx- 
imating u, and uq is favorable for the Gauss-Seidel scheme that was employed to 
solve the implicit finite difference equations. 

In the Gauss-Seidel iteration procedure, “old” values, frozen from the previous 
iteration, were used to approximate all x derivatives in (15) and also for u5 in the 
C, uq term. For the first order derivatives of the last two terms in (15), only new 
values were used, if possible, and otherwise only old values, i.e., the use of both old 
and new values for the same first order u derivative is not allowed. Alternatively for 
one relaxation step the relaxation proceeds marching in the positive p direction and 
towards decreasing a, and in the next step in the negative p direction and towards 
increasing a. 

Fourier analysis of the corresponding linearized constant coefficient problem for 
arbitrary a and /I shows that this Gauss-Seidel procedure is convergent if 

Igradxl#O (16) 

and the grid is sufficiently fine. There is one point at t = 3 where (16) is not satisfied, 
but no convergence difficulties were observed. In the Fourier analysis it was assumed 
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for simplicity that the time is large enough that the coefficient C, (Eq. (15)) is 
relatively small compared to unity; in this case the corresponding term in (15) may 
be neglected for convergence considerations. 

Initial data for the Gauss-Seidel procedure were obtained from an explicit three- 
level time step. Fourier analysis of the constant coefficient problem shows that the 
modes which vary quickly over the grid points grow in amplitude due to this explicit 
step, but for these modes the Gauss-Seidel procedure converges fast. The explicit step 
is favorable, as it decreases the amplitude of the slow modes for which the 
Gauss-Seidel procedure converges slowly. In [ 131 the iteration was terminated when 
the maximum change in the velocity u in an iteration became less than 0.0003, but 
here this was further reduced to 0.00005, which corresponds better to the occurring 
numerical round-off error. As a check, for the most coarse grid (19 x 9) a 
comparison run was made in which the Gauss-Seidel iteration was continued until 
the results were completely converged. The maximum change in the dependent 
variable x at t = 3 due to this prolonged iteration was 0.00051, which is small 
compared to the truncation error which is discussed below in Section 4 and found to 
be 0.0048. For the finest grid (73 X 33), reducing the tolerance by a factor 10 to 
0.000005 and using double precision, the maximum change in x was only 0.00035. 
No use of overrelaxation was made. 

The velocity when t tends to zero is given by 

24 - sin(x) erf( 1.5 tan in/?) (17) 

and U, is found by expanding u in a power series in time and substitution in the right- 
hand side of (14). Since p, and /I, are singular at t = 0, in a finite difference 
procedure this introduces a numerical error of order 

O(@ In At). (18) 

The error of (18) was avoided by slightly modifying the initial data as given by (17) 
so as to yield an exactly vanishing total truncation error in the evaluation of the 
spatial derivatives in (14) for t = 0. Worked out, this leads to an ordinary finite 
difference equation for u to yield a velocity which deviates O(L@) of the exact result 
of Eq. (17); hence the overall accuracy of the calculation is not affected. This 
procedure proved satisfactory in practice. 

A satisfactory computational time was achieved; 240 implicit time steps at a 
73 x 33 grid took exactly 5 min of IBM 370/168 time, including compilation and 
output. 

4. RESULTS 

Calculations were performed at three grid sizes: 19 x 9, 37 x 17, and 73 x 33. The 
results definitely show that x develops a stationary point, at which time, according to 
Eq. (1 l), the solution becomes singular. In Fig. 2 the value of 1 grad x] at its minimum 
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FIG. 2. The value of /grad x1 at its minimum. 

FIG. 3. As Fig. 2, but for the initial data of (5) (from 1131). 

is plotted against time. From this figure, the stationary point can be estimated to 
occur at t = 3 + 0.05. The truncation error in /grad x] is clearly larger than that 
observed in [ 131 (see Fig. 3), which must be attributed to both the later appearance 
of the singularity, t = 3 instead of t = 2.75, and the different stretching of the 4 
coordinate which yields locally less resolution in the present case. The agreement 
between the Richardson extrapolated solution and the finest grid is good, as shown in 
Fig. 2. 

Figure 4 shows the lines of constant 1 grad x] at t = 3, displaying the singularity at 
a position <= 1.57 and v = 0.558; thus the singularity forms in the middle of the 
computational domain, in contrast with what is more or less suggested in Fig. 3 of 
181. Figure 4 was obtained by linear interpolation of the results of the 73 x 33 grid. 
The x distribution itself at the singularity is shown in Fig. 5; the occurrence of the 
stationary point (encircled) is clear. 

To assess the accuracy of x, and consequently the validity of our reasoning that .Y 
develops a stationary point as depicted in Fig. 5, the approach will be to compare the 
results at various grid sizes. It is convenient, for this purpose, to introduce the 
maximum norm on the 19 x 9 grid points of the most coarse grid. The simplest way 
to estimate the error is to take the deviation in this maximum norm of the results of 
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the 73 x 33 solution from the solution obtained by Richardson extrapolation of the 
37 x 17 and 73 x 33 results; this yields at t = 3 

llx73x33 --%7xl7,73x33ll=o*oo48~ (19) 

where the norm of x itself is z, so that (19) corresponds to 0.15 % deviation. 
However, this estimate makes sense only when the Richardson extrapolated solution 
itself is more accurate than the error of (19), which is by no means obvious; compare 
] 17). Equation (19) is valid if the convergence is sufficiently accurately presented by 
a quadratic relationship, or more precisely, if -& th of the difference between the 
Richardson extrapolated solutions from the 19 X 9 and 37 X 17 and from the 37 x 17 
and 73 x 33 grids is much less than the error of (19); compare [ 181. It is verified that 
-&- th of the difference of the extrapolated solutions is about 0.00054, which is indeed 
small compared to (19). We conclude that (19) is a correct estimate. Of course, 

FIG. 4. Lines of constant 1 grad x/. 

FIG. 5. The x profiles through the stationary point. 
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TABLE 1 

Convergence of the Derivatives of the Velocity at I = 3 

grid max. 114~1 max. / 21, / max. /u,/ 

19 x 9 19.23 0.192 6.3 

31 x 17 19.87 0.878 58.3 

73 x 33 20.03 0.889 181.0 

Eq. (19) also includes the error due to the finite time step (At = 0.0125 for the 
73 x 33 grid). 

The error of (19) is for t = 3, while for smaller times the error is less; e.g., for 
t = 1, the error in x is only 0.00054. The decay in accuracy is obviously due to 
distortion of the Lagrangian grid and reduced smoothness of the solution. 

That U, becomes infinite is further illustrated in Table I; here the computed 
maximum values of uI, u,, and U, over all the grid points, at t = 3, have been 
collected. The Lagrangian derivatives uI and U, converge to finite values. The value 
of uI is relatively large due to the Lagrangian coordinates floating downstream near 
the front stagnation point; at the singular point uI is only -0.04. For u, there is no 
trace of convergence. The large values of u, are indeed, as predicted by (12), at the 
stationary point x = 1.942. Further, the fact that x is stationary, and thus local 
resolution infinite, allows the determination of u, with less numerical smoothing than 
would be possible in an Eulerian calculation; compare also Fig. 11. Thus we 
conclude that although local resolution is infinite, there is no sign of any bound on u, 

-steady boundary -steady boundary layer, (t = Q) ) layer, (t = Q) ) 

u 
t 

*5 

FIG. 6. Comparison of the t = 3 velocity with the asymptotic velocity. 
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FIG. 7. The position of the point of zero wall shear against time. 
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FIG. 8. The variation of the wall shear parameter Ft. with time. 
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FIG. 9. The velocity at the rear stagnation point for t = 2. 

and indeed the obtained properly nondimensionalized values are very big compared 
to the maximum value at t = 0, which is 1. 

The nice thing about the Lagrangian description is that the occurrence of the 
singularity is completely determined by x(<, q, t), i.e., Eq. (19) and Fig. 2. However, 
accurate values were also obtained for the other dependent variables ~(5, f~, t) and 
u(<, q, t) (=x,), despite the distortion of the grid. This renders it possible to compare 
the present Lagrangian solution to existing Eulerian ones, as in Figs. 6 through 11. 

Figure 6 compares the t = 3 velocity with the steady state t = co result. Except for 
the region of high U, values, the solution at t = 3 is already steady. 

Figure 7 yields the position of the point of zero wall shear against time. Our results 
yield that zero wall shear first appears at t = 0.646, which agrees well with the results 
of Bar-Lev and Yang [ 191 (0.644), Cebeci [9] (0.640), and Collins and 
Dennis [ 12, 201 (0.644), but differs a little from the value 0.70 found by Telionis and 
Tsahalis [8] and small time expansions of order lower than 3; compare 18, 191. There 
is general agreement concerning the trajectory of zero wall shear after t = 0.646; 
compare [9, 191 and Fig. 7. We find that the small time expansion of Bar-Lev and 
Yang [ 191 overestimates the position of zero shear a bit for larger times (Fig. 7). 
According to Fig. 7 of Cebeci [9] and Fig. 3 of Telionis and Tsahalis [ 81 these 
authors observe the same trend at t = 2.8. 

Figure 8 yields the value of 

F;, = u,/sin x 

at the wall at the forward and rear stagnation points. Asymptotically for t + co, the 
values at forward and rear stagnation points become equal and opposite [ 1 1 ] and 
equal to 1.2326 [ 11. (Incidentally, we believe that this result of Proudman and 
Johnson [ 111 will continue to be valid after t = 3, despite the occurrence of 
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separation.) Figure 8 shows that there are some differences at the rear stagnation 
point between the results of Cebeci [9] and those of the present work. As our 37 x 17 
and 73 x 33 grids yield virtually the same results, we believe our own values to be 
correct. This is further supported by an estimate by means of Fig. 1 in Belcher et al., 
[ lo], which supports our results, as shown in Fig. 8, while Collins and Dennis’ 1201 
results appear to be between Cebeci’s curves and ours. 

As Cebeci finds a different value for FE,, he must necessarily also find a different 
velocity profile at the rear stagnation point, which is indeed the case; see Fig. 9. 

Figure 10 shows the wall shear. These results agree well with those of Bar-Lev and 
Yang [ 191, Belcher et al. [lo], Cebeci 191, and Collins and Dennis [ 121. 

Figure 11 shows the displacement thickness, properly non-dimensionalized as 

6* = 
I 

m (1 - u/sin x) dy/2”* 
0 

to conform with the normalizations of Belcher et al. [lo] and Cebeci [9]. There is 
good agreement with these authors. Although Cebeci [9] has calculated up to t = 2.8, 
he presents 6” only up to t = 2, despite the fact that 6* is one of the most important 
variables in determining regularity of the boundary layer. On the other hand, Fig. 11 
suggests that Cebeci’s resolution in the x-direction, with gridpoints 4.5O apart, may be 
poor at t = 2.8 due to the steep gradients. (Those steep gradients occur only away 
from the wall, for large y, because of the position of the stationary point at-q = 0.535. 

, 7.2, 7.6, 
,2+3,3-s 

FIG. 10. The variation of the wall shear with x, for various instants. 

581!38.!2 2 
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1 -7-t x 

FIG. 11. The variation of the displacement thickness with x, for various instants, 

TABLE II 

Computed Values of Several Variables for Various Gridsizes 

Gridsize 19 x 9 37x 17 73 x 33 145 x 65 

s at min(lgrad xi) for T= 1.5 2.002 1.954 1.943 1.939 

u at min(lgrad.ui) for T= 1.5 -.3 17 -.298 -.276 p.274 

T at separation 1.659 1.553 1.515 1.506 

T for zero wall shear at .Y = R -1’ .3264 .3231 .3220 

F” for x = E and T = 1.5 /I 

i i (-) indicates no value was determined. 

1.130 1.1 125 1.1122 

Indeed all calculations prior to the present one suffer from insufficient resolution in 
the x-direction to adequately resolve for the singularity. The present solution, 
however, has infinite resolution at the singularity because x is stationary.) 

One might be tempted to suppose that the differences between our and Cebeci’s 
solution, Figs. 8 and 9, are due to his insufficient resolution in x-direction. However, 



SEPARATING BOUNDARY LAYERS 139 

Belcher et al. [ 101 have their gridpoints 10” apart and they do find the correct value 
for FE, (Fig. 8). It is difficult to say anything definite, as Cebeci does not present an 
estimate of the computational accuracy analogous to Eq. (19). When this report was 
being assessed, results of a 145 X 65 grid became available, showing little new. 
Table II compares various important variables at different grid sizes. 

Now that it has been established that the boundary layer turns singular, the next 
step is of course to establish the analytical form of the singularity. Preliminary 
analytical results were recently obtained which are in good agreement with the 
numerical data and which we hope to discuss in detail in a future report. Also the 
evidence definitely suggests that the boundary layer singularity signals the start of the 
process of the formation of the two symmetrically situated vortices well known from 
flow visualizations; compare Goldstein 1211. 

5. CONCLUSION 

A new member has been added to the already extensive list of “numerical proofs” 
for problems in which an analytical treatment is too difficult. With it, the standing 
controversy about the possibility that solutions of the boundary layer equation may 
become spontaneously singular must be considered as settled. According to the error 
estimate (19), there is no doubt as to the accuracy of plots like Fig. 5. Also, Figs. 2 
and 3 clearly show that the stationary point forms at finite time. Therefore it must be 
concluded that accurate solutions which yielded smooth solutions were just 
terminated too early. 
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